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Abstract—A new and convergent synthesis of the antitumour macrolide rhizoxin D 2 is described. The synthesis features a
Wadsworth–Emmons olefination and a facile intramolecular Stille reaction to elaborate the 16-membered macrocyclic core 5 from
the vinyl iodide 3 and the vinyl stannane 4 as key steps. © 2002 Elsevier Science Ltd. All rights reserved.

Rhizoxin 1 is a novel macrolide isolated from the
pathogenic fungus Rhizopus chinensis,1 which shows
powerful antitumour and antifungal activity.2 Indeed,
the compound has now undergone extensive clinical
trials as a potential drug candidate.3 Rhizoxin D 2 is a
congener of rhizoxin 1 from R. chinensis4 and this
didesepoxy compound is the likely biogenetic precursor
of 1. The rhizoxins have attracted considerable interest
within the synthetic chemistry community,5 and a total
synthesis of rhizoxin 1,6 together with four total synthe-
ses of rhizoxin D 2,7 have been published. We now
describe a new enantioselective synthesis of rhizoxin D
2 which features a facile intramolecular Stille coupling
reaction as the key step.

Our synthetic strategy to rhizoxin D 2 was based on
elaboration of the phosphonate substituted vinyl iodide
3 and the �-lactone substituted vinyl stannane 4 frag-
ments, and their coupling leading to the core macro-
cyclic lactone 5 via a Wadsworth–Emmons olefination,
followed by an intramolecular Stille reaction as key
steps (Scheme 1).

Thus, an Evans aldol reaction between (R)-4-benzyl-3-
propionyloxazolidin-2-one8 and the known �,�-unsatu-
rated aldehyde 69 first gave the corresponding imide 7,
as a single diastereoisomer, in 85% yield. The imide 7
was next converted into the aldehyde 9 in three
straightforward steps via the intermediate alcohol 8
(Scheme 2). A Mukaiyama aldol reaction between the
aldehyde 9 and the silyl enol ether 1010 at −78°C, under
chelation-control, using AlMe2Cl as the Lewis acid,11

then gave the aldol 11 with >96% diastereoselectivity
and in 81% yield. The diastereoselectivity was deter-
mined following separation of the two aldol isomers
and 1H NMR studies, in combination with comparison
of NMR data with those of the alternative diastereoiso-

mer which was produced from reaction of 9 with 10 in
the presence of BF3·OEt2.12 Reduction of the aldol 11
using tetramethylammonium triacetoxyborohydride
next led to the 1,3-anti diol 1213 which, in two steps,
was converted into the key phosphonate substituted
vinyl iodide 3 (Scheme 2).

The chiral �-lactone substituted vinyl stannane 4 was
prepared starting from the known �,�-unsaturated ester
14.14 Reduction of 14 to the corresponding primary
alcohol, followed by vinyl ether formation and Claisen* Corresponding author.
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Scheme 1.

Scheme 2. Reagents and conditions : (i) Bu2BOTf, Et3N, (R)-4-benzyl-3-propionyloxazolidin-2-one, CH2Cl2, −78°C�0°C, 85%; (ii)
MeOTf, 2,6-di-tert-butyl-4-methylpyridine, CHCl3, reflux, 6 h, 84%; (iii) LiBH4, MeOH, Et2O, 0°C, 1 h, 80%; (iv) Dess–Martin,
CH2Cl2, rt, 1 h, 99%; (v) BH(NMe4)(OAc)3, AcOH, MeCN, −30°C, 18 h, 83%; (vi) TBSOTf, 2,6-lutidine, −78°C, 15 min, 77%;
(vii) diethylphosphonoacetic acid, DCC, DMAP, 0°C�rt, 2 h, 86%.

rearrangement, first gave the racemic �,�-unsaturated
aldehyde 15. An Evans aldol reaction between 15 and
(4S,5R)-4-methyl-5-phenyl-3-propionyloxazolidin-2-one
next led to a 1:1 mixture of the diastereoisomeric imides
16 and 17 in a combined 79% yield (Scheme 3). The
diastereoisomers were separated by chromatography,
and their stereochemistries followed unambiguously
from analysis of relevant coupling data in the NMR
spectra of the corresponding �-lactones, 18 and 19,
produced from them,15 viz. Jvic 7 and 6 Hz for 18; Jvic

11 and 6 Hz for 19.

The diastereoisomer 16, with the ‘correct’ stereochem-
istry for rhizoxin, was next reduced with LiBH4 leading
to the corresponding primary alcohol, which was then
protected as its PMB ether 20. A straightforward
hydroboration–oxidation procedure converted the
alkene 20 into the 1,5-diol 21, which was then oxidised
to the �-lactone 22. Deprotection of the PMB group in
22 followed by Dess–Martin oxidation of the resulting
primary alcohol next produced an aldehyde which

underwent a smooth reaction with dimethyl
diazomethylphosphonate16 leading to the terminal acet-
ylene 23. The acetylene 23 was converted into the
E-vinyl stannane 2417 which was then deprotected,
followed by oxidation, leading to the aldehyde vinyl
stannane 4 (Scheme 4).

Interestingly, the diastereoisomer 17, with the ‘incor-
rect’ stereochemistry for rhizoxin, could also be con-
verted into the same 1,5-diol intermediate 21 by the
series of reactions described in Scheme 5, thereby allow-
ing recycling of this easily available precursor.

A Wadsworth–Emmons olefination reaction between
the phosphonate 3 and the aldehyde 4, under Masa-
mune–Roush conditions,18 led exclusively to the E-
alkene 25 in a pleasing 74% yield. When this
stannane–iodide 25 was treated with AsPh3–Pd(0)
dibenzylideneacetone19 in degassed DMF at 70°C for 5
h, it underwent smooth intramolecular sp2–sp2 cross-
coupling with preservation of the double bond
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Scheme 3. Reagents and conditions : (i) DIBAL-H, THF, −78°C, 1 h, 93%; (ii) EtOCH�CH2, Hg(O2CCF3)2, rt, 8 h, 78%; (iii)
170°C, sealed tube, 36 h, 97%; (iv) Bu2BOTf, Et3N, (4S,5R)-5-methyl-4-phenyl-3-propionyloxazolidin-2-one, CH2Cl2, −78°C�
0°C, 2 h, 79%.

Scheme 4. Reagents and conditions : (i) LiBH4, MeOH, Et2O, 0°C, 2 h, 70%; (ii) PMBO(N�H)CCl3, CSA, CH2Cl2, −20°C�0°C,
72 h, 60%; (iii) 9-BBN-H, 0°C�rt, 12 h, then NaOH, H2O2, 0°C, 4 h, 91%; (iv) Ag2CO3/Celite, PhH, reflux, 3 h, 91%; (v) DDQ,
CH2Cl2, rt, 2 h, 100%; (vi) Dess–Martin, CH2Cl2, rt, 1 h, 84%; (vii) (MeO)2(O)PCHN2, KOtBu, THF, −78°C, 2 h, 100%; (viii)
NBS, AgNO3, acetone, 1 h, then Pd(PPh3)4, Bu3SnH, THF, rt, 3 h, 70%; (ix) TBAF, TsOH, THF, rt, 3 h, 70%; (x) Dess–Martin,
pyr, CH2Cl2, rt, 1 h, 70%.

geometries in the precursor leading to the 16-membered
macrocyclic lactone core 5 in rhizoxin in an acceptable
48% yield (Scheme 6). Selective removal of the primary
TBDPS protecting group in 5, followed by oxidation of
the resulting allylic alcohol with MnO2 next gave the
�,�-unsaturated aldehyde 26. A Horner olefination
reaction between 26 and the oxazole substituted phos-
phine oxide 27, at −78°C in the presence of KHMDS,
next led to the all E-conjugated triene,20 which on
deprotection with HF/pyridine produced (+)-rhizoxin D
2 as a solid. The synthetic rhizoxin showed chiroptic

and NMR spectroscopic data which were identical to
those reported for the natural product.4
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Scheme 5. Reagents and conditions : (i) LiBH4, MeOH, Et2O, 0°C, 2 h, 96%; (ii) PMBO(N�H)CCl3, CSA, CH2Cl2, −20°C�0°C,
72 h, 62%; (iii) TBAF, THF, rt, 2 h, 99%; (iv) TBSCl, Imid., CH2Cl2, rt, 2 h, 82%; (v) 9-BBN-H, 0°C�rt, 12 h, then NaOH,
H2O2, 0°C, 4 h, 95%; (vi) TBDPSCl, Imid., CH2Cl2, rt, 2 h, 96%; (vii) PPTS, EtOH, 60°C, 2 h, 72%.

Scheme 6. Reagents and conditions : (i) LiCl, DBU, MeCN, 0°C�rt, 1 h, 74%; (ii) Pd2dba3, AsPh3, DMF, 70°C, 5 h, 48%; (iii)
TBAF/AcOH (1:1), THF, rt, 8 h, 74%; (iv) MnO2, CH2Cl2, rt, 3 h, 100%; (v) KHMDS, THF, −78°C�0°C, 1 h, 38%; (vi) HF/Pyr,
pyr, THF, rt, 48 h, 78%.
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